#!/usr/bin/env python
# coding=utf-8
"""
The Aligner class simplifies the process of running alignment.
"""
import logging
import numpy as np
import os
import sys
import time
from itertools import chain
import torch
import torch.distributed as dist
import transformers
from datasets import (
set_caching_enabled,
Dataset,
DatasetDict,
)
from transformers import (
default_data_collator,
pipeline,
set_seed,
)
from transformers.testing_utils import CaptureLogger
from lmflow.args import DatasetArguments
from lmflow.datasets.dataset import Dataset as LMFlowDataset
from lmflow.pipeline.base_aligner import BaseAligner
from lmflow.pipeline.utils.raft_trainer import RaftTrainer
[docs]
logger = logging.getLogger(__name__)
[docs]
class RaftAligner(BaseAligner):
"""
Initializes the `RaftAligner` class with given arguments.
Parameters
------------
model_args : ModelArguments object.
Contains the arguments required to load the model.
data_args : DatasetArguments object.
Contains the arguments required to load the dataset.
raft_aligner_args : RaftAlignerArguments object.
Contains the arguments required to perform alignment.
args : Optional.
Positional arguments.
kwargs : Optional.
Keyword arguments.
"""
def __init__(self, model_args, data_args, aligner_args, *args, **kwargs):
[docs]
self.model_args = model_args
[docs]
self.data_args = data_args
[docs]
self.aligner_args = aligner_args
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO)
output_reward_path = aligner_args.output_reward_path
if output_reward_path is not None:
os.makedirs(os.path.dirname(output_reward_path), exist_ok=True)
# Deletes a maybe-exist file
try:
os.remove(output_reward_path)
except OSError:
pass
[docs]
def _initialize_trainer(self, model, tokenizer, training_args):
"""
This function takes the model and tokenizer as the input and initialize the trainer.
"""
trainer = RaftTrainer(
model=model,
args=training_args,
train_dataset=Dataset.from_dict({"text": [ " " ] }),
eval_dataset=Dataset.from_dict({}),
tokenizer=tokenizer,
data_collator=default_data_collator,
compute_metrics=None,
preprocess_logits_for_metrics=None,
)
return trainer
[docs]
def _load_dataset(
self,
selected_dataset,
model,
tokenizer,
model_args,
data_args,
training_args,
):
'''
This function prepares the dataset for every iteration.
'''
raw_datasets = selected_dataset
if training_args.do_train:
column_names = list(raw_datasets["train"].features)
else:
column_names = list(raw_datasets["validation"].features)
text_column_name = "text" if "text" in column_names else column_names[0]
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
def tokenize_function(examples):
with CaptureLogger(tok_logger) as cl:
output = tokenizer(examples[text_column_name])
# clm input could be much much longer than block_size
if "Token indices sequence length is longer than the" in cl.out:
tok_logger.warning(
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
" before being passed to the model."
)
return output
with training_args.main_process_first(desc="dataset map tokenization"):
if not data_args.streaming:
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset",
)
else:
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
remove_columns=column_names,
)
if data_args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > 1024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`."
)
block_size = 512
else:
if data_args.block_size > tokenizer.model_max_length:
logger.warning(
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
)
block_size = min(data_args.block_size, tokenizer.model_max_length)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
# to preprocess.
#
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
with training_args.main_process_first(desc="grouping texts together"):
group_batch_size = 1000
if data_args.disable_group_texts:
group_batch_size = 1
if not data_args.streaming:
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
batch_size=group_batch_size,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc=f"Grouping texts in chunks of {block_size}",
)
else:
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
batch_size=group_batch_size,
)
if training_args.do_train:
if "train" not in tokenized_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = lm_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
return train_dataset
[docs]
def _clean_text(self, text):
if len(text) == 0:
return text
stext = [x for x in text.split("###Human") if x]
return stext[0].strip().strip("#")
[docs]
def _discard_sample(self, text):
if "#" in text:
return True
elif len(text) < 2: # delete empty sample
return True
return False
[docs]
def _get_batch_dataset_top(
self,
model,
batch_input,
alpha=0.2,
iter_id=0,
local_rank=0,
output_min_length=16,
output_max_length=48,
infer_batch_size=8,
generation_kwargs={},
tokenizer=None,
training_args=None,
reward_model=None,
output_reward_path=None,
):
"""
:param batch_input: input prompts
"""
# we will get the batch dataset via Dataset.from_dict
start_time = time.time()
query_tensors = batch_input['input_ids']
querys = batch_input['input']
data_size = len(querys)
reward_eva = [] # record the reward of the samples
input_texts = []
responses = []
for i, query_tensor in enumerate(query_tensors):
query = querys[i]
input_texts.append(query)
if (i + 1) % infer_batch_size == 0 or (i+1 == data_size):
gen_len = np.random.randint(output_min_length, output_max_length)
generation_kwargs["max_new_tokens"] = gen_len
inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(training_args.device)
with torch.no_grad():
outputs = model.generate(**inputs, **generation_kwargs)
generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
generated_texts = [
generated_text.replace(input_texts[i], "") for i, generated_text in enumerate(generated_texts)
]
texts_for_rewards = [q + r for q, r in zip(input_texts, generated_texts)]
texts_for_reward_dataset = LMFlowDataset.create_from_dict({
"type": "text_only",
"instances": [
{ "text": text } for text in texts_for_rewards
],
})
reward_dataset = reward_model.inference(texts_for_reward_dataset)
rewards = [ sample["value"] for sample in reward_dataset.to_dict()["instances"] ]
reward_eva.extend(rewards)
responses.extend(generated_texts)
input_texts = []
data = [{"input": querys[j], "output": [responses[j]]} for j in range(len(reward_eva))]
world_size = int(os.getenv("WORLD_SIZE", "1"))
all_process_list =[{}] * world_size
data_to_send = [[data[i], reward_eva[i]] for i in range(len(data))]
dist.all_gather_object(all_process_list, data_to_send)
gathered_data = []
gathered_reward = []
for i in range(world_size):
tmp_data = [tmp[0] for tmp in all_process_list[i]]
gathered_data.extend(tmp_data)
tmp_reward = [tmp[1] for tmp in all_process_list[i]]
gathered_reward.extend(tmp_reward)
idx = np.argsort(gathered_reward)[::-1][:int(len(gathered_reward) * alpha)]
gathered_data = [gathered_data[j] for j in idx]
reward_train = [gathered_reward[j] for j in idx]
self.reward_seq.append(np.mean(gathered_reward))
self.train_reawrd.append(np.mean(reward_train))
import matplotlib.pyplot as plt
if training_args.local_rank == 0:
plt.plot(self.reward_seq, marker="o")
plt.plot(self.train_reawrd, marker="*")
plt.legend(["Model reward", "Reward of SFT Set"])
plt.savefig(self.store_dir + '/training_reward.png')
plt.close()
logger.info(f"collected data of {len(gathered_data)}")
logger.info([np.mean(gathered_reward), np.mean(reward_train)])
if training_args.local_rank == 0 and output_reward_path is not None:
with open(output_reward_path, mode='a') as fout:
fout.write('mean reward: ' + str(np.mean(gathered_reward)) + 'mean reward in training set: ' + str(np.mean(reward_train)))
fout.write("\n")
prompt_structure = "{definition}{input}{output}"
tmp_output_dataset = {
"text": [ prompt_structure.format(
definition="", input=sample["input"], output=sample["output"][0]
) for sample in gathered_data
]
}
# We store the training set for monitoring the RAFT training
all_texts = tmp_output_dataset['text']
output_eval_dataset = {}
output_eval_dataset['type'] = 'text_only'
output_eval_dataset['instances'] = [{'text': i_text} for i_text in all_texts]
import json
if local_rank == 0:
with open(self.store_dir + "/train_set_" + str(iter_id) + ".json", 'w', encoding='utf8') as f:
json.dump(output_eval_dataset, f, ensure_ascii=False)
# We need to make sure that the order of the samples are the same for each agent
all_process_list = [{}] * world_size
data_to_send = [tmp_output_dataset, local_rank]
dist.all_gather_object(all_process_list, data_to_send)
for i in range(world_size):
if all_process_list[i][1] == 0:
output_dataset = all_process_list[i][0]
break
return DatasetDict({ "train": Dataset.from_dict(output_dataset) })
[docs]
def _get_batch_dataset_local(
self,
model,
batch_input,
K=8,
iter_id=0,
local_rank=0,
output_min_length=16,
output_max_length=48,
infer_batch_size=8,
generation_kwargs={},
tokenizer=None,
training_args=None,
reward_model=None,
output_reward_path=None,
):
"""
:param batch_input: input prompts
"""
# we will get the batch dataset via Dataset.from_dict
start_time = time.time()
querys = batch_input['input']
data_size = len(querys)
reward_eva = []
reward_train = []
input_texts = []
responses = []
record_querys = []
all_outputs = []
for i, query in enumerate(querys):
input_texts = [query for _ in range(K)]
gen_len = np.random.randint(output_min_length, output_max_length)
generation_kwargs["max_new_tokens"] = gen_len
inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(training_args.device)
with torch.no_grad():
outputs = model.generate(**inputs, **generation_kwargs)
generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
generated_texts = [
generated_text.replace(input_texts[i], "") for i, generated_text in enumerate(generated_texts)
]
generated_texts = [
self._clean_text(generated_text) for generated_text in generated_texts
]
texts_for_rewards = [q + r for q, r in zip(input_texts, generated_texts)]
texts_for_reward_dataset = LMFlowDataset.create_from_dict({
"type": "text_only",
"instances": [
{ "text": texts_for_rewards[i] } for i in range(len(texts_for_rewards))
],
})
reward_dataset = reward_model.inference(texts_for_reward_dataset)
rewards = [ sample["value"] for sample in reward_dataset.to_dict()["instances"] ]
reward_eva.append(rewards[0])
################################
# we impose some post-detection and discard the samples with certain criteria.
for kk in range(K):
if self._discard_sample(generated_texts[kk]):
rewards[kk] = -self.INF
################################
idx_to_record = np.argmax(rewards)
all_outputs.append(generated_texts[0])
# if we discard all the samples, we do not record the sample
if rewards[idx_to_record] != -self.INF:
responses.append(generated_texts[idx_to_record])
reward_train.append(rewards[idx_to_record])
record_querys.append(query)
input_texts = []
data = []
for j in range(len(reward_train)):
sample = {}
sample["input"] = record_querys[j]
sample["output"] = [responses[j]]
data.append(sample)
world_size = int(os.getenv("WORLD_SIZE", "1"))
all_process_data =[{}] * world_size
dist.all_gather_object(all_process_data, data)
all_process_eval_reward =[{}] * world_size
dist.all_gather_object(all_process_eval_reward, reward_eva)
all_process_train_set_reward =[{}] * world_size
dist.all_gather_object(all_process_train_set_reward, reward_train)
gathered_data = []
gathered_reward = []
gathered_train_reward = []
for i in range(world_size):
gathered_data.extend(all_process_data[i])
gathered_reward.extend(all_process_eval_reward[i])
gathered_train_reward.extend(all_process_train_set_reward[i])
if training_args.local_rank == 0 and output_reward_path is not None:
with open(output_reward_path, mode='a') as fout:
fout.write('mean reward: ' + str(np.mean(gathered_reward)) + 'mean reward in training set: ' + str(np.mean(gathered_train_reward)))
fout.write("\n")
logger.info([np.mean(gathered_reward), np.mean(gathered_train_reward)])
self.reward_seq.append(np.mean(gathered_reward))
self.train_reawrd.append(np.mean(reward_train))
import matplotlib.pyplot as plt
if training_args.local_rank == 0:
plt.plot(self.reward_seq, marker="o")
plt.plot(self.train_reawrd, marker="*")
plt.legend(["Model reward", "Reward of SFT Set"])
plt.savefig(self.store_dir + '/training_reward.png')
plt.close()
prompt_structure = "{definition}{input}{output}"
tmp_output_dataset = {
"text": [ prompt_structure.format(
definition="", input=sample["input"], output=sample["output"][0]
) for sample in gathered_data
]
}
# We store the training set for monitoring the RAFT training
all_texts = tmp_output_dataset['text']
output_eval_dataset = {}
output_eval_dataset['type'] = 'text_only'
output_eval_dataset['instances'] = [{'text': i_text} for i_text in all_texts]
import json
if local_rank == 0:
with open(self.store_dir + "/train_set_" + str(iter_id) + ".json", 'w', encoding='utf8') as f:
json.dump(output_eval_dataset, f, ensure_ascii=False)
# We need to make sure that the order of the samples are the same for each agent
all_process_list = [{}] * world_size
data_to_send = [tmp_output_dataset, local_rank]
dist.all_gather_object(all_process_list, data_to_send)
for i in range(world_size):
if all_process_list[i][1] == 0:
output_dataset = all_process_list[i][0]
break
logger.info(f"collected data of {len(output_dataset['text'])}")
return DatasetDict({ "train": Dataset.from_dict(output_dataset) })
[docs]
def align(self, model, dataset, reward_model):
"""
Perform alignment for a model
Parameters
------------
model : BaseModel object.
dataset: Dataset object.
Input dataset for model to generate outputs. The input and output
will then be feed into reward model to get the reward for
alignment.
reward_model: RegressionModel object.
"""
tokenizer = model.get_tokenizer()
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "left"
dataset = self._load_input_dataset(dataset, tokenizer)
set_caching_enabled(False)
wrapped_model = model
model = model.get_backend_model()
generation_kwargs = {
"min_length": 1,
"top_k": 0.0,
"top_p": 1.0,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"temperature":0.85,
}
aligner_args = self.aligner_args
training_args = aligner_args
model_args = self.model_args
data_args = self.data_args
world_size = int(os.getenv("WORLD_SIZE", "1"))
set_seed(42 + training_args.local_rank)
ITERATION = aligner_args.num_raft_iteration
collection_strategy = aligner_args.collection_strategy
sft_batch_size = aligner_args.raft_batch_size
if collection_strategy == "top":
alpha = aligner_args.top_reward_percentage
M = int(sft_batch_size / world_size / alpha)
elif collection_strategy == "local":
K = int(1/aligner_args.top_reward_percentage)
M = int(sft_batch_size / world_size)
else:
raise NotImplementedError("We only support two data collection strategies")
print(M, K)
if training_args.local_rank == 0:
print(aligner_args)
self.store_dir = aligner_args.output_dir
self.reward_seq = []
self.train_reawrd = []
data_size = len(dataset['input'])
lr = training_args.learning_rate
random_idxs = np.arange(data_size)
np.random.shuffle(random_idxs)
raft_trainer = self._initialize_trainer(model, tokenizer, training_args)
raft_trainer.train(resume_from_checkpoint=False, is_first_time=True)
for iteration in range(ITERATION):
set_seed(666 + training_args.local_rank + world_size * (iteration+1))
end_idx = np.min([data_size, (iteration+1) * M])
batch_input = dataset.select(random_idxs[iteration * M : end_idx])
model.gradient_checkpointing_disable()
model.config.use_cache = True
start_time = time.time()
if collection_strategy == "top":
selected_dataset = self._get_batch_dataset_top(
raft_trainer.tmp_model,
batch_input,
alpha,
iteration,
training_args.local_rank,
output_min_length=aligner_args.output_min_length,
output_max_length=aligner_args.output_max_length,
infer_batch_size=aligner_args.inference_batch_size_per_device,
generation_kwargs=generation_kwargs,
tokenizer=tokenizer,
training_args=training_args,
reward_model=reward_model,
output_reward_path=aligner_args.output_reward_path,
)
elif collection_strategy == "local":
selected_dataset = self._get_batch_dataset_local(
raft_trainer.tmp_model,
batch_input,
K,
iteration,
training_args.local_rank,
output_min_length=aligner_args.output_min_length,
output_max_length=aligner_args.output_max_length,
infer_batch_size=K,
generation_kwargs=generation_kwargs,
tokenizer=tokenizer,
training_args=training_args,
reward_model=reward_model,
output_reward_path=aligner_args.output_reward_path,
)
end_time = time.time()
logger.info("It takes %.2f s to inference one stage", end_time - start_time)
raft_trainer.train_dataset = self._load_dataset(
selected_dataset,
raft_trainer.tmp_model,
tokenizer,
model_args,
data_args,
training_args,
)
logger.info(f"iter {iteration}")
start_time = time.time()
model.gradient_checkpointing_enable()
model.config.use_cache = False
train_result = raft_trainer.train(resume_from_checkpoint=False)
end_time = time.time()
logger.info("It takes %.2f s to train one stage", end_time - start_time)
if (iteration+1) * M > data_size:
logger.info("One epoch is completed.")
break
'''
if training_args.local_rank == 0 and iteration % 2 == 0:
wrapped_model.save(aligner_args.output_dir + "/" + "model" + str(iteration))
print(iteration, "I save a model with", self.reward_seq[-1])
'''
if aligner_args.output_dir is not None:
wrapped_model.save(aligner_args.output_dir)
return wrapped_model