Source code for lmflow.utils.position_interpolation.llama_rope_scaled_monkey_patch

from functools import partial

import torch
import transformers
import transformers.models.llama.modeling_llama

[docs] class CondenseRotaryEmbedding(torch.nn.Module): def __init__(self, dim, pi_ratio, ntk_ratio, max_position_embeddings=2048, base=10000, device=None): super().__init__()
[docs] self.ntk_ratio = ntk_ratio
max_position_embeddings *= ntk_ratio base = base * ntk_ratio ** (dim / (dim-2)) #Base change formula inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) self.register_buffer("inv_freq", inv_freq)
[docs] self.pi_ratio = pi_ratio
max_position_embeddings *= pi_ratio
[docs] self.max_seq_len_cached = max_position_embeddings
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype) / pi_ratio freqs = torch.einsum("i,j->ij", t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) dtype = torch.get_default_dtype() self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
[docs] def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case. if seq_len > self.max_seq_len_cached: self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype) / self.pi_ratio freqs = torch.einsum("i,j->ij", t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1).to(x.device) self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(x.dtype), persistent=False) self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(x.dtype), persistent=False) return ( self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), )
[docs] def replace_llama_with_condense(pi_ratio, ntk_ratio): transformers.models.llama.modeling_llama.LlamaRotaryEmbedding = partial(CondenseRotaryEmbedding, pi_ratio=pi_ratio, ntk_ratio=ntk_ratio)