lmflow.optim.dummy ================== .. py:module:: lmflow.optim.dummy .. autoapi-nested-parse:: Dummy Optimizer. .. !! processed by numpydoc !! Classes ------- .. autoapisummary:: lmflow.optim.dummy.Dummy Module Contents --------------- .. py:class:: Dummy(params: Iterable[torch.nn.parameter.Parameter], lr: float = 0.0, betas: Tuple[float, float] = (0.9, 0.999), weight_decay: float = 0.0) Bases: :py:obj:`torch.optim.Optimizer` An dummy optimizer that does nothing. Parameters: params (:obj:`Iterable[nn.parameter.Parameter]`): Iterable of parameters to optimize or dictionaries defining parameter groups. lr (:obj:`float`, `optional`, defaults to 0): The learning rate to use. .. !! processed by numpydoc !! .. py:method:: step(closure: Callable = None) Performs a single optimization step. Arguments: closure (:obj:`Callable`, `optional`): A closure that reevaluates the model and returns the loss. .. !! processed by numpydoc !!