lmflow.optim.lamb ================= .. py:module:: lmflow.optim.lamb Classes ------- .. autoapisummary:: lmflow.optim.lamb.Lamb Module Contents --------------- .. py:class:: Lamb(params, lr: float = 0.001, betas=(0.9, 0.999), eps: float = 1e-06, weight_decay: float = 0, clamp_value: float = 10, adam: bool = False, debias: bool = False) Bases: :py:obj:`torch.optim.optimizer.Optimizer` Implements Lamb algorithm. It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes` https://arxiv.org/abs/1904.00962 Note: Reference code: https://github.com/cybertronai/pytorch-lamb .. !! processed by numpydoc !! .. py:attribute:: clamp_value .. py:attribute:: adam .. py:attribute:: debias .. py:method:: step(closure=None) Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. .. !! processed by numpydoc !!