lmflow.optim.yogi ================= .. py:module:: lmflow.optim.yogi Classes ------- .. autoapisummary:: lmflow.optim.yogi.Yogi Module Contents --------------- .. py:class:: Yogi(params, lr: float = 0.01, betas=(0.9, 0.999), eps: float = 0.001, initial_accumulator: float = 1e-06, weight_decay: float = 0) Bases: :py:obj:`torch.optim.optimizer.Optimizer` Implements Yogi Optimizer Algorithm. It has been proposed in `Adaptive methods for Nonconvex Optimization`. https://papers.nips.cc/paper/8186-adaptive-methods-for-nonconvex-optimization # noqa Note: Reference code: https://github.com/4rtemi5/Yogi-Optimizer_Keras .. !! processed by numpydoc !! .. py:method:: step(closure=None) Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. .. !! processed by numpydoc !!