lmflow.pipeline.finetuner#
The Finetuner class simplifies the process of running finetuning process on a language model for a TunableModel instance with given dataset.
Attributes#
Classes#
Initializes the Finetuner class with given arguments. |
Module Contents#
- class lmflow.pipeline.finetuner.Finetuner(model_args: lmflow.args.ModelArguments, data_args: lmflow.args.DatasetArguments, finetuner_args: lmflow.args.FinetunerArguments, *args, **kwargs)[source]#
Bases:
lmflow.pipeline.base_tuner.BaseTuner
Initializes the Finetuner class with given arguments.
- Parameters:
- model_argsModelArguments object.
Contains the arguments required to load the model.
- data_argsDatasetArguments object.
Contains the arguments required to load the dataset.
- finetuner_argsFinetunerArguments object.
Contains the arguments required to perform finetuning.
- argsOptional.
Positional arguments.
- kwargsOptional.
Keyword arguments.
- group_text(tokenized_datasets, model_max_length)[source]#
Groups texts together to form blocks of maximum length model_max_length and returns the processed data as a dictionary.
- tune(model: lmflow.models.hf_decoder_model.HFDecoderModel | lmflow.models.hf_text_regression_model.HFTextRegressionModel | lmflow.models.hf_encoder_decoder_model.HFEncoderDecoderModel, dataset: lmflow.datasets.dataset.Dataset, transform_dataset_in_place=True, data_collator=None)[source]#
Perform tuning for a model
- Parameters:
- modelTunableModel object.
TunableModel to perform tuning.
- dataset:
dataset to train model.