Checkpoints#
In general, you can directly load from checkpoints by using --model_name_or_path
. However, the LLaMA case is slightly different due to the copyright issue.
LLaMA Checkpoint#
First, you need to get the access of LLaMA model from facebookresearch/llama. Download the official checkpoints and save them into
${llama-path}
.Second, convert the official checkpoints
${llama-path}
to HuggingFace supported checkpoints${llama-hf-path}
by runningpython ./scripts/convert_llama_weights_to_hf.py --input_dir ${llama-path} --model_size 7B --output_dir ${llama-hf-path}/llama-7b-hf
Then you are good to go by setting the checkpoint path to
${llama-hf-path}/llama-7b-hf
. Enjoy it!(optional) Now you have the original llama-7b-hf pretrained model. With
cd output_models && ./download.sh all && cd -
You can obtain the model difference finetuned by ours. By a way similar to ./scripts/run_evaluation_with_lora.sh
,
CUDA_VISIBLE_DEVICES=0 \
deepspeed examples/evaluate.py \
--answer_type text \
--model_name_or_path ${llama-hf-path}/llama-7b-hf \
--lora_model_path output_models/${llama-model-diff-path} \
--dataset_path data/alpaca/test \
--prompt_structure "Input: {input}" \
--deepspeed examples/ds_config.json
You can now evaluate with the finetuned llama model.